Monatshefte für Chemie Chemical Monthly

© Springer-Verlag 1997 Printed in Austria

1,3-Diphenylpropane-1,3-diamines XI [1]. Conversion of a 3-Hydroxy-1,3-diphenylpropan-1-one to 1,3-Diphenylpropane-1,3-diamines

A. Kaiser*, P. Bielmeier, and W. Wiegrebe#

Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

Summary. Highly diastereoselective BH₃/*THF syn*-reduction of the 3-hydroxy-1,3-diphenylpropan-1-one/BBr₃ complex 3/BBr₃ (cf. *Sarko*) afforded the *meso*-diol 4, whereas racemate 5 was obtained by BH₃/*THF* reduction without complexation. Mesylation, exchange of mesylate by azide, and reduction with SnCl₂/thiophenol led to the diamines 10 and 11 which were also produced by reductive N-N cleavage of the 4,5-dihydropyrazole 13.

Keywords. 1,3-Diphenylpropane-1,3-diamines; 3-Hydroxy-1,3-diphenylpropan-1-one; 3,5-Diphenyl-4,5-dihydropyrazole; syn-Reduction of β -hydroxyketones.

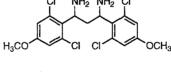
1,3-Diphenylpropan-1,3-diamine, 11. Mitt. [1]: Umsetzung eines 3-Hydroxy-1,3-diphenylpropan-1-ons zu 1,3-Diphenlypropan-1,3-diaminen

Zusammenfassung. Hochdiastereoselektive BH₃/*THF-syn-*Reduktion des 3-Hydroxy-1,3-diphenyl-propan-3-on/BBr₃-Komplexes 3/BBr₃ (vergl. *Sarko*) lieferte das *meso-*Diol 4, wähend das Razemat 5 durch BH₃/*THF-*Reduktion ohne Komplexbildung entstand. Mesylierung, Ersatz von Mesylat durch Azid und SnCl₂/Thiophenol-Reduktion führte zu den Diaminen 10 und 11, die auch durch reduktive N-N-Spaltung aus dem 4,5-Dihydropyrazol 13 erhalten wurden.

Introduction

The biochemical rational of our efforts to synthesize 1,3-diphenylpropane-1,3-diamines and their Pt(II) complexes, highly substituted by halogens in the phenyl rings, has been outlined in a preceding paper [1]. The synthesis of *meso*-1,3-bis(2,6-dichloro-4-methoxyphenyl)propane-1,3-diamine (1) and its racemic diastereomer 2 was impossible following v. Auwers route [2,3]; however, we were able to prepare the diamines 1 and 2 by Zn/HCl reduction [1] of 3,5-bis(2,6-dichloro-4-methoxyphenyl)-4,5-dihydropyrazole in a *meso*/racemate ratio of 1:4 as indicated by the ¹H NMR spectrum of the mixture. Preparative chromatography led to a *meso*/racemate ratio of 1:10 which is unfavourable for us because we are in need of both diastereomers for biochemical and pharmacological tests.

[#] Dedicated to Prof. Dr. G. Wurm, Berlin, on the occasion of his 60th birthday


1248 A. Kaiser et al.

Results and Discussion

Here we describe an alternative approach to analogous highly *ortho* substituted 1,3-diphenylpropane-1,3-diamines, starting from the properly chlorinated β -hydroxyketone 3 which in turn can be easily obtained by addition of the pertinent acetophenone anion to the corresponding benzaldehyde following the protocol of *Levenberg et al.* [4] (Scheme 1). In this case, we neglected the 4-methoxy substituents in both starting materials because the preparation of 2,6-dichloro-4-methoxybenzaldehyde (which is also a precursor of the corresponding acetophenone) is laborious [5] and the outcome of our syntheses is always strongly influenced by the four substituents in the *ortho* positions of the 1,3-diphenyl-propane moiety, but not by the *para* substituents [3].

From the broad variety of reducing reagents, conceivable for β -hydroxyketone 3, only the BH₃/*THE* complex in dichloromethane turned out to be useful because the chlorine substituents should not be eliminated reductively using this reagent. LiAlH₄ and NaBH₄ led to useless mixtures, even under mild conditions; with BH₃/ *THF*, however, the racemate 5 was obtained in 32% yield after purification.

When we tried to reduce β -hydroxyketone 3 by an enantiomerically pure oxazaborolidine complex, obtained *in situ* from (S)-valinol and B₂H₆/THF [6], a mixture of 1,3-diols 4 and 5 was obtained in 85% chemical yield. ¹H NMR data [1] of the separated diol 5 correspond to those of an enantiomer of racemate 5, but $[\alpha]_D = 1.3^\circ$ points towards the racemate 5 itself – although not proving it because this value is still within the limits of error of the polarimeter (data not given).

1: meso 2: racemate

Scheme 1

During our pertinent experiments, *Sarko et al.* [7] published their results concerning the reduction of Ti- or B-chelates of β -hydroxyketones with high *syn* selectivity. In our case, this procedure should favour the preparation of the *meso* diastereomer 10 which can also be obtained in far too low a yield, however, from the 4,5-dihydropyrazole 13 (see below). High *de* values were obtained by *Sarko* [7] if a boron-chelate with a short B–O bond (about 1.35 Å) was generated from BCl₃ and the β -hydroxyketone. For possible conformations and energy minima, cf. Ref. [7].

Following *Sarko*'s ideas [7] for the reduction of the β -hydroxyketone 3, we obtained the *meso* diastereomer 4 in 71% chemical yield with de > 99: 1 after CC (¹H NMR). Recrystallization from dichloromethane/n-hexane afforded 62% stereochemically pure 1,3-diol 4. In this case, the chelate complex is formed quickly, but again the *ortho* substituents slow down the reduction which was complete only after 6 h.

The stereochemistry of the diastereomers can be determined by ^{1}H NMR spectroscopy [8] of the CH₂ protons. Because the racemate 5 shows C₂-symmetry, these protons are homotopic. They do not resonate, however, as a t, but as a dd ($\delta = 2.47$ ppm, $J_1 = 5$ Hz, $J_2 = 2$ Hz, see Experimental) in accordance with *Roos* [9] who also describes a dd for 1,3-diphenylpropane-1,3-diol but cites only one J value (5.7 Hz). In contrast to 5, the *meso* diastereomer 4 has magnetically non-equivalent CH₂ protons which give rise to two dt at $\delta = 3.10$ and 2.23 ppm ($J_1 = 9$ Hz, $J_2 = 7$ Hz).

In the next step, the OH groups of diols 4 and 5 had to be replaced by N-functions suitable as precursors of the amino groups. For this aim, tosylates are often recommended, but we used the less bulky mesylates on account of the *ortho* substituents. The experimental procedure was established using the mixture of diastereomers 4 and 5. The dimesylates 6 and 7 were obtained following *Crossland* [10]. Their conversion to the diazides is a stereochemically critical step, because $S_N 1$ conditions at the benzylic positions had to be impeded (*vide infra*). When we tried to convert the dimesylates into the diazides in MeOH/water according to *Wiley* [11], we obtained a mixture of components showing a strong OH absorption in its IR spectrum besides a weak N_3 band. This points towards water having acted as a nucleophile. Consequently, we worked with NaN_3 in absol. *DMF* under N_2 , all the more so since the aprotic polar nature of *DMF* does not favour $S_N 1$ reactions.

The pure diastereomers 4 and 5 were converted into their dimesylates 6 and 7 (63 and 75% yield, respectively) which could not be fully characterized on account of their lability (decomposition in contact with air). Their IR spectra show mesylate absorptions at 1368 and $1171 \,\mathrm{cm}^{-1}$. 6 and 7 were transformed into the corresponding diazides 8 and 9. This substitution seems to be of considerable stereochemical homogeneity, because we did not observe the formation of racemic diazide 9 starting from *meso* dimesylate 6, and the *meso* diastereomer 8 was not obtained from racemic mesylate 7. Clean inversion during substitution reactions at benzylic positions is well known [12]. In the ¹H NMR spectrum the *meso*-diazide 8 shows two multiplets at 2.58–2.70 and 2.78–2.90 ppm, whereas the homotopic CH₂ protons of 9 resonate as a dd at 2.55 ppm ($J_1 = 7 \,\mathrm{Hz}$, $J_2 = 4 \,\mathrm{Hz}$) in accordance with the data of the corresponding diols 4 and 5. The reduction of the diazides 8 and 9 to the diamines 10 and 11 worked smoothly when we used SnCl₂/thiophenol

1250 A. Kaiser et al.

Scheme 2

according to *Bartra* [13]. These diamines can also be obtained by N-N cleavage of the corresponding 4,5-dihydropyrazole 13 (see also Ref. [1]), but the overall yields are better starting from β -hydroxyketone 3, especially for the *meso* diastereomer 10.

4,5-Dihydropyrazole **13** was obtained from hydrazine hydrate and 1,3-bis(2,6-dichlorophenyl)-2-propen-1-one (**12**) which in turn was obtained by condensation of 2,6-dichlorobenzaldehyde and 2,6-dichloroacetophenone (Scheme 2).

Experimental

General remarks: see Ref. [1]. In order to avoid confusion due to the complex isotope pattern, mass spectral data are calculated for ³⁵Cl only.

1,3-Bis(2,6-dichlorophenyl)-3-hydroxypropan-1-one (3)

To a solution of 0.4 ml of diisopropylamine in 15 ml of absol. tetrahydrofuran (THF), 2 ml of n-BuLi solution (1.6 M in n-hexane) are added under N_2 within 5 min at -78° C. After stirring for 15 min, 480 mg (2.5 mmol) of 2,6-dichloroacetophenone (Lancaster) in 4 ml of absol. THF are added dropwise. After having reached 0°C, the solution is cooled again to -78° C, and 440 mg of 2,6-dichlorobenzaldehyde (Merck) in 4 ml of absol. THF are slowly added. After stirring for 1 h, the reaction is stopped by addition of 10 ml of satd. NH_4 Cl solution.

When the mixture has reached room temp., it is extracted 3 times with $15\,\text{ml}$ of Et_2O each, the org. phase is washed with brine (3x), dried (Na₂SO₄), and evaporated *in vacuo* affording a yellow oil which is purified by CC (SiO₂/CH₂Cl₂). Recrystallization (CH₂Cl₂/n-hexane 1:3) gives colourless crystals.

Yield: 500 mg (55%); m.p.: 74–76°C; IR (KBr): $\nu = 3500$ (OH, br), 3079 (C-H arom), 1705 (C=O), 1580, 1560, 1429 (C=C), 1086 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.19-3.27$ (dt; ⁴J = 4 Hz, ²J = 3 Hz, 2H, CH₂), 3.86–3.97 (dd; ³J = 9 Hz, ⁴J = 4 Hz, 1H, OH, exch.), 6.20–6.27 (m; 1H, CH), 7.12–7.33 (m; 6H, arom) ppm; EI-MS (70 eV): m/z (%) = 362 (5, M⁺·), 344 (10,

 $(M-H_2O)^+$), 327 (12, $(M-\cdot Cl)^+$), 309 (35, $(344-\cdot Cl)^+$) or $(327-H_2O)^+$), 173 (100, $(C_6H_3Cl_2-C=O)^+$); $C_{15}H_{10}Cl_4O_2$ (364.0); calcd.: C 49.49, H 2.77; found: C 49.48, H 2.92.

1,3-Bis(2,6-dichlorophenyl)propane-1,3-diols 4 and 5 (mixture of diastereomers)

a) Reduction with BH₃/THF

At -15° C, 7.5 ml (7.5 mmol) of a 1 M solution of BH₃/THF are added dropwise to a solution of 1.8 g (5 mmol) of 3-hydroxypropanone 3 in 30 ml of absol. CH₂Cl₂. The solution is stirred at room temp. overnight. After cooling to 0°C, 30 ml of 1 N HCl are slowly added (evolution of H₂!), and the mixture is stirred for 30 min at this temperature. After separation of the phases, the aqueous layer is extracted twice with 20 ml of CH₂Cl₂ each, the combined org. phases are washed with water and twice with brine, dried (Na₂SO₄), and evaporated *in vacuo* affording a colourless oil which is purified by CC (SiO₂: CH₂Cl₂/MeOH 9:1).

Yield: 1.6 g (87%); IR (film): $\nu = 3600 - 3200$ (OH, br), 3069 (C-H arom), 2919 (C-H aliphat.), 1595, 1574, 1562, 1472 (C=C), 1082 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.44$ –2.50 (dd; ³J = 7 Hz, ²J = 2 Hz, 1H, CH₂), 2.18–2.27 and 3.04–3.18 (m; 1H, CH₂) diastereomers (1:1), 3.04 (d; ³J = 5 Hz, 1H, OH, exch.), 3.40 (d; ³J = 5 Hz, 1H, OH, exch.), 5.66–5.75 (m; 1H, CH), 5.85–5.94 (m; 1H, CH), 7.11–7.31 (m; 6H, arom) ppm; FI/FD-MS (CH₂Cl₂): m/z (%) = 364 (70, M⁺·). Analogous processing of 3 in absol. *THF* diminished the yield to 55%.

meso-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diol (4); reduction with BH₃/THF and BBr₃

Under N₂, 300 mg (0.83 mmol) of **3** are dissolved in 10 ml of absol. CH₂Cl₂. This solution is cooled to -78° C and carefully mixed with 0.8 ml (0.83 mmol) of BBr₃ dissolved in 3 ml of absol. CH₂Cl₂. After stirring for 10 min, 1.5 ml (1.5 mmol) of a 1 *M* solution of BH₃/*THF* are added at -78° C. After stirring for 6 h at this temp., 4 ml of absol. MeOH are added carefully. After warming to room temp., the solvents are removed *in vacuo* affording an orange suspension which is stirred with 15 g of SiO₂ and 15 ml of absol. MeOH overnight at room temp. After filtration, the cake is washed with 20 ml of absol. MeOH and absol. CH₂Cl₂ each, and the filtrate is evaporated *in vacuo*. The solid residue is purified by flash chromatography (SiO₂; CH₂Cl₂, then CH₂Cl₂/ethyl acetate 9:1) giving colourless crystals from CH₂Cl₂/*n*-hexane.

Yield: 187 mg (62%); de: 99:1 (¹H NMR); m.p.: 109–109.5°C; IR (KBr): $\nu = 3600-3300$ (OH, br), 3079 (C-H arom), 2977, 2875 (C-H aliphat), 1582, 1563, 1437 (C=C), 1090 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.18-2.28$ (dt; ³J = 9 Hz, ²J = 7 Hz, 1H, HCH), 3.05–3.18 (dt; ³J = 9 Hz, ²J = 7 Hz, 1H, HCH), 3.40 (d; ³J = 4 Hz, 2H, CHOH, exch.), 5.66–5.75 (m; 2H, CHOH), 7.10–7.31 (m; 6H, arom) ppm; C₁₅H₁₂Cl₄O₂ (366.1); calcd.: C 49.22, H 3.30; found: C 48.92, H 3.57.

rac-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diol (5)

At -78° C, a solution of 500 mg of (S)-valinol [7] in 5 ml of absol. THF is mixed with 5 ml (5 mmol) of a 1 M solution of BH₃/THF. Then the mixture is stirred at room temp. overnight and cooled again to 0° C. A solution of 300 mg (0.83 mmol) of 4 in 4 ml of absol. THF is added dropwise. After stirring for 1 h at 0° C and overnight at room temp., 10 ml of 1 N HCl are slowly added at 0° C. After work-up (see above), the 1,3-diols 5 and 6 are obtained as a mixture of diastereomers which is separated by CC (SiO₂; CH₂Cl₂/ethyl acetate 9:1).

5: Colourless crystals, yield: 96 mg (32%); m.p.: $125-126^{\circ}$ C; IR (KBr): $\nu = 3422$ (OH, br), 3050 (C-H arom), 2919 (C-H aliphat), 1582, 1560, 1437 (C=C), 1088 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.44-2.50$ (dd; ³J = 5 Hz, ²J = 2 Hz, 2H, CH₂), 3.04 (d; ³J = 5 Hz, 2H, OH), 5.85–5.95 (m; 2H, CH), 7.10–7.32 (m; 6H, arom) ppm; $C_{15}H_{12}Cl_4O_2$ (366.1); calcd.: C 49.22, H 3.30; found: C 49.39, H 3.57.

1252 A. Kaiser et al.

1,3-Bis(2,6-dichlorophenyl)propane-1,3-diol bismethanesulfonates 6 and 7 (mixture of diastereomers)

 $700 \,\mathrm{mg}$ (1.9 mmol) of a mixture of 4 and 5 are dissolved in 15 ml of absol. $\mathrm{CH_2Cl_2}$; the solution is cooled to $-15^{\circ}\mathrm{C}$ and mixed with 300 mg (3 mmol) of $\mathrm{Et_3N}$. Within 5 min, 350 mg (2.3 mmol) of freshly distilled methanesulfonyl chloride are added dropwise under stirring. After further stirring for 20 min, 30 ml of absol. $\mathrm{CH_2Cl_2}$ are added, the org. phase is washed with 20 ml of ice water, 25 ml of $2N \,\mathrm{HCl}$, satd. $\mathrm{Na_2CO_3}$ solution, and brine, dried ($\mathrm{Na_2SO_4}$), and the solvent is evaporated *in vacuo*. A weakly yellow oil is obtained which is dried for 3 h at the oil pump (660 mg; 66%) and used without purification.

IR (film): $\nu = 3042$, 3021 (C-H arom), 2936 (C-H aliphat.), 1582, 1564, 1441 (C=C), 1368, 1171 (SO₂) cm⁻¹.

meso-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diol bismethanesulfonate (6)

From 364 mg (1 mmol) of 4 as described for the mixture of 6 and 7; 400 mg (77%).

rac-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diol bismethanesulfonate (7)

From 360 mg (1 mmol) of 5 as described for the mixture of 6 and 7; 410 mg (80%).

1,3-Bis(2,6-dichlorophenyl)propane-1,3-diazides 8 and 9 (mixture of diastereomers)

Under N_2 , 251 mg (0.5 mmol) of the above mixture of **6** and **7**, dissolved in 5 ml of absol. *DMF*, are stirred with 400 mg (6.1 mmol) of NaN₃ for 24 h at 60°C. After cooling the mixture is carefully poured into 25 ml of ice water and extracted five times with 15 ml of Et₂O each. The Et₂O phase is washed with brine, 1 N HCl, and brine again (two times each), dried (Na₂SO₄), and evaporated *in vacuo*. Drying at the oil pump affords 126 mg (63%) of a mixture of **8** and **9**.

IR (film): $\nu = 3062$ (C-H arom), 2101 (N₃), 1580, 1562, 1435 (C=C), 1082 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.50$ (dd; J = 4 Hz, J = 7 Hz, 1H, HCH), 2.58–2.90 (m; 1H, HCH), 5.42 and 5.80 (dd; J = 4 Hz, J = 7 Hz, 2H, CHN₃), 7.15–7.40 (m; 6H, arom) ppm.

meso-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diazide (8)

From 498 mg (0.95 mmol) of 6 as described for the mixture of 8 and 9.

Yield: 270 mg (68%); colourless crystals (Et₂O/*n*-hexane); m.p.: 95–96°C (dec.); IR (KBr): $\nu=3079$ (C-H arom), 2932 (C-H aliphat), 2099 (N₃), 1580, 1562, 1501 (C=C) cm⁻¹; ¹H NMR (CDCl₃): $\delta=2.58-2.90$ (m; 2H, CH₂), 5.42 (dd; J=3.8 Hz, J=6.9 Hz, 2H, CHN₃), 7.18–7.38 (m; 6H, arom) ppm; C₁₅H₁₀Cl₄N₆ (416.1); calcd.: C 43.30, H 2.42, N 20.20; found: C 43.69, H 2.85, N 19.80.

rac-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diazide (9)

From 502 mg (0.96 mmol) of 7 as described for the mixture of 8 and 9.

Yield: 300 mg (75%); colourless crystals (Et₂O/*n*-hexane); m.p.: 124–124.5°C (dec.); IR (KBr): $\nu=3060$ (C-H arom), 2957 (C-H aliphat), 2101 (N₃), 1580, 1562, 1435 (C=C) cm⁻¹; ¹H NMR (CDCl₃): $\delta=2.55$ (dd; J=4 Hz, J=7 Hz, 2H, CH₂), 5.79 (dd; J=4 Hz, J=7 Hz, 2H, CHN₃), 7.37–7.17 (m; 6H, arom) ppm; C₁₅H₁₀Cl₄N₆ (416.1); calcd.: C 43.30, H 2.42, N 20.20; found: C 43.59, H 2.67, N 19.76.

meso-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diamine (10)

From 150 mg (0.36 mmol) of 8 as described for racemate 11.

Yield: 93 mg (71%); colourless oil; IR (film): $\nu = 3395-3100$ (NH, br), 3070 (C-H arom), 1580, 1561 (C=C), 1079 (C-Cl, arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.20$ (s, br; 4H, NH₂), 2.45–2.56 (m; 1H, HCH), 2.63–2.72 (m; 1H, HCH), 4.74 (dd; ³J = 6.4 Hz, ²J = 1.6 Hz, 2H, CHNH₂), 7.03–7.32 (m; 6H, arom) ppm; FAB-MS (glycerol/H₂O): m/z (%) = 363 (MH⁺ of free diamine).

rac-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diamine (11)

Under N_2 , 189 mg (1 mmol) of $SnCl_2$ are dissolved in 5 ml of absol. *THF*, mixed with 0.5 ml of Ph-SH and 5 ml on Et_3N , and stirred for 5–10 min. Then, 150 mg (0.36 mmol) of racemate **9** are added at once. After stirring for 40 min at room temp., the solvent is evaporated. The yellow residue is stirred with 2 N NaOH and CH_2Cl_2 (20 ml each) until the yellow colour disappears. The phases are separated, and the aqueous layer is extracted twice with CH_2Cl_2 . The combined org. phases are washed twice with brine, dried (Na_2SO_4), and evaporated. The remaining yellow oil is dissolved in 30 ml of 2 N HCl; the acidic solution is extracted three times with 20 ml of Et_2O each (discarded), the aqueous phase is alkalized with conc. NH_3 and extracted three times with Et_2O (20 ml each). The org. phase is washed with brine, dried, and evaporated *in vacuo*.

Yield: 100 mg (76%); colourless oil; IR (film): $\nu = 3400-3200$ (NH, br), 3069 (C-H, arom), 1580, 1560, 1435 (C=C), 1078 (C-Cl, arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.05-2.40$ (s, br; 4H, NH₂), 2.45 (t; ³J = 6 Hz, 2H, CH₂), 5.15 (t; ³J = 6 Hz, 2H, CHNH₂), 6.92–7.55 (m; 6H, arom) ppm.

(E)-1,3-Bis(2,6-dichlorophenyl)-2-propen-1-one (12)

Under vigorous stirring, a solution of $5.1\,\mathrm{g}$ of NaOH (130 mmol) in $500\,\mathrm{ml}$ of EtOH/H₂O 1/1 is mixed simultaneously with 17.5 g (100 mmol) of 2,6-dichlorobenzaldehyde and 18 g (100 mmol) of 2,6-dichloroacetophenone. After stirring for 12 h, the solution is cooled to 0°C and stirred for 60 min at this temperature. The crude chalcone is sucked off, washed with 50 ml of cold EtOH/H₂O 1/1, dried, and recrystallized from EtOH 99%.

Colourless crystals; yield: 31.1 g (90%); m.p.: $124-125^{\circ}$ C; IR (KBr): $\nu = 3073$ (C-H arom), 1665 (C=O) 1578, 1560, 1431 (C=C) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 7.10$ (d; ³J = 16 Hz, 1H, =CH), 7.36 (d; ³J = 16 Hz, 1H, =CH), 7.15–7.50 (m; 6H, arom) ppm; $C_{15}H_8Cl_4O$ (346.0); calcd.: C 52.07, H 2.23; found: C 51.49, H 2.53.

3,5-Bis(2,6-dichlorophenyl)-4,5-dihydropyrazole (13)

13 was prepared using the protocol given in Ref. [1], starting from 3.5 g (10 mmol) of 12.

Colourless crystals; yield: 2.5 g (70%); decomposes upon contact with air (brownish discolouration); IR (film): $\nu = 3347$ (NH, br), 3050 (C-H arom) 1582 (C=N), 1560 and 1429 (C=C), 1086 (C-Cl arom) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.07-3.35$ (dd; ³J = 12 Hz, ²J = 5 Hz 2H, CH₂), 5.70 (t; ³J = 12 Hz, 1H, CHN) 6.90–7.17 (m; 6H, arom) ppm; EI-MS (70 eV): m/z (%) = 358 (50, M⁺·), 323 (15, (M - ·Cl)⁺), 288 (10, (323 - ·Cl)⁺·).

N,N'-Bisacetyl-1,3-bis(2,6-dichlorophenyl)propane-1,3-diamines (14 and 15)

These diastereomers were prepared from 2 g (5.5 mmol) of 13 according to Ref. [1].

meso-N,N'-Bisacetyl-1,3-bis(2,6-dichlorophenyl)propane-1,3-diamine (14)

Colourless crystals; yield: 74 mg (3%); m.p.: 115–117°C; (absol. MeOH); IR (KBr): $\nu = 3301$ (NH, br), 3071 (C-H arom), 2932 (C-H aliphat), 1655 (C=O), 1580, 1560, 1541 and 1437 (C=C), 1040

(C-Cl arom) cm $^{-1}$; 1 H NMR (*DMSO*-d₆): δ = 1.76 (s; 6H, COCH₃), 2.03–2.15 (m; 1H, *H*CH), 2.34–2.45 (m; 1H, CH*H*), 5.25–5.34 (m; 1H, C*H*NH), 5.58–5.67 (m; 1H, C*H*NH), 7.24–7.69 (m; 6H, arom), 8.08 (d; J = 8 Hz, 1H, N*H*COCH₃), 8.15 (d; J = 8 Hz, 1H, N*H*COCH₃) ppm; $C_{19}H_{18}Cl_4N_2O_2$ (448.2); calcd.: C 50.90, H 4.04, N 6.25; found: C 50.55, H 4.34, N 5.95.

rac-N,N'-Bisacetyl-1,3-bis(2,6-dichlorophenyl)propane-1,3-diamine (15)

Colourless crystals; yield: 700 mg (28%); m.p.: 129–131°C (MeOH/CHCl₃ 1:1); IR (KBr): v = 3444 (NH, br), 3067 (C-H arom), 2930 (C-H aliphat), 1665 (C=O), 1580, 1562 and 1438 (C=C), 1036 (C-Cl arom) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 1.81$ (s; 6H, COCH₃), 2.33–2.69 (m; 2H, CH₂, partially overlapped by the solvent signal), 5.29 (dd; J = 7 Hz, J = 14.1 Hz, 1H, CHNH), 5.65 (dd; J = 7 Hz, J = 14.1 Hz, 1H, CHNH), 7.19–7.40 (m; 6H, arom) 8.53 (d; J = 6 Hz, 2H, NHCOCH₃) ppm; EI-MS (70 eV): m/z (%) = 411 (70, (M \rightarrow -Cl)⁺, ortho-effect); C₁₉H₁₈Cl₄N₂O₂ (448.2); calcd.: C 50.90, H 4.04, N 6.25; found: C 50.59, H 4.45, N 5.95.

meso-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diamine (10)

Prepared from 14 (224 mg, 0.5 mmol) following the protocol given in Ref. [1]; yield: 123 mg (68%); data see above.

rac-1,3-Bis(2,6-dichlorophenyl)propane-1,3-diamine (11)

Prepared from 15 (426 mg, 0.95 mmol); yield: 254 mg (73%); data see above.

References

- [1] Part X: Bielmeier P, Kaiser A, Gust R, Wiegrebe W (1996) Monatsh Chem 127: 1073
- [2] von Auwers K, Müller H (1933) J Prakt Chem NF 137: 57
- [3] Kammermeier T, Kaiser A, Lee GS, Burgemeister T, Wiegrebe W (1991) Arch Pharm (Weinheim) 324: 177
- [4] Smith AB, Levenberg PA (1981) Synthesis 567
- [5] Karl J, Gust R, Spruss T, Schneider RM, Schönenberger H, Engel J, Wrobel K-H, Lux F, Trebert-Haeberlin S (1988) J Med Chem 31: 72
- [6] Itsuno S, Hirao A, Nakahama S, Yamazaki N (1983) J Chem Soc Perkin Trans 1, 1673
- [7] Sarko CR, Collibee SE, Knorr AL, DiMare M (1996) J Org Chem 61: 868
- [8] Kammermeier T, Wiegrebe W (1994) Arch Pharm (Weinheim) 327: 697
- [9] Roos GHP, Donovan AR (1996) Synlett 1189
- [10] Crossland RK, Servis KL (1970) J Org Chem 35: 3195
- [11] Wiley RH, Moffat J (1957) J Org Chem 22: 995
- [12] Eliel EL (1956) In: Newman MS (ed) Steric Effects in Organic Chemistry. Wiley, New York, p 68
- [13] Batra M, Romea P, Urpi F, Vilarrasa J (1990) Tetrahedron 46: 587

Received June 11, 1997. Accepted June 25, 1997